KERSTIN SCHMID (FAU),
FELIX FREILING (FAU),
KONSTANTIN BAYREUTHER
(DHBW MANNHEIM)

IMF 2025, 17.09.2025

LIMITS TO THE FORENSIC ANALYSIS OF CONTAINER APPLICATIONS IN CLOUD ENVIRONMENTS

MOTIVATION

- Software applications in form of container is an popular deployment method
- Orchestration layers such as Kubernetes is utilized for automated and efficient management
- Cloud service providers (CSP) offer container solutions in different cloud models
- Impact to DFIR: Containers are ephemeral; IR-teams has to act within short period of time

RESEARCH QUESTIONS / GOALS

- Investigate the relation between container access level (deployment model)
 and the ability to gather sufficient evidence in case of an incident
 - Infrastructure as a Service (laaS): high amount of significant artifacts
 - Platform as a Service (PaaS) / Software as a Service (Saas): decreasing amount of artifacts
- Prove a tradeoff between these access level and provability
- Discuss the implications to the DFIR process

RELATED WORK

- Cloud forensics with the main focus of host forensics Grobauer and Schreck [2010], Ruan et al. [2011], and Farina et al. [2015]
- Recoverability of data from docker process memory Clausing [2016] and and Gharaibeh et al. [2024]
- All mentioned works either assume non-cloud environments or full system access
- Limited amount of scientific literature that discusses about limits of different cloud access models to the ability to collect forensic evidence

METHODOLOGY: EXPERIMENTAL SETUP & ACQUISITION METHODS

Acquisition method	Forensic artifacts	laaS: EKS ¹	PaaS: EKS Fargate ²	SaaS: ECS ³
Live analysis host	Memory dump, docker metadata, logs	✓	X	X
Snapshot container host	Container file system	✓	X	X
Analysis Kubernetes cluster via kubectl	Metadata, logs	✓	✓	X
Live analysis container	Application content, files, runtime information	✓	✓	✓

Amazon Elastic Kubernetes Service

² Amazon Elastic Kubernetes Service Fargate

³ Amazon Elastic Container Service

METHODOLOGY: ATTACK SCENARIOS

- Low-privileged attacker:
 - Exploitation of a vulnerable web application
 - Deployment of attacker owned container
- High-privileged attacker:
 - Linux privilege escalation attack
 - Escape to host

RESULTS: LOW-PRIVILEGED ATTACKER

Attack vectors	laaS: EKS	PaaS: EKS Fargate	SaaS: ECS
Initial Access: Exploit Public-Facing Application	✓	✓	X
Execution: Command and Script Interpreter	√	X	X
Credential Access: Unsecure Credential		X	n/a
Lateral Movement: Use Alternate Authentication Material		X	n/a
Execution: Deploy Container	✓	✓	n/a
Impact: Resource Hijacking	√	✓	n/a

RESULTS: HIGH-PRIVILEGED ATTACKER

Attack vectors	laaS: EKS	PaaS: EKS Fargate	SaaS: ECS
Initial Access: Compromise Software Supply Chain	√	X	n/a
Privilege Escalation: Exploitation for Privilege Escalation		✓	n/a
Privilege Escalation: Deploy (Privileged) Container		n/a	n/a
Lateral Movement: Escape to Host		n/a	n/a

DISCUSSION & CONCLUSION

	laaS: EKS	PaaS: EKS Fargate	SaaS: ECS
Low-privileged container	6/6	3/6	0/2
High-privileged container	4/4	1/2	0/0

- Amount of collectible evidences highly depends on the level of access
- Impact to the DFIR process
 - Container solution is better secured by default the more operational responsibility is transferred to the CSP
 - EKS solution: more significant artifacts; higher probability of finding answers to questions like ,,What happened?"

LIMITATIONS & FUTURE WORK

Limitations:

- Extraction time of artifacts immediatley after scenario was executed
- Only one container application was executed simultaenously
- Future work:
 - CSPs must be required to provide interfaces and appropriate logging for an effective DFIR process
 - Investigation of further container technologies and additional access options to the containers

QUESTIONS?

Thanks for your attention!